From genes to pain: Na v 1.7 and human pain disorders.
نویسندگان
چکیده
Gain-of-function mutations or dysregulated expression of voltage-gated sodium channels can produce neuronal hyperexcitability, leading to acute or chronic pain. The sodium channel Na(v)1.7 is expressed preferentially in most slowly conducting nociceptive neurons and in sympathetic neurons. Gain-of-function mutations in the Na(v)1.7 channel lead to DRG neuron hyperexcitability associated with severe pain, whereas loss of the Na(v)1.7 channel in patients leads to indifference to pain. The contribution of Na(v)1.7 to acquired and inherited pain states and the absence of motor, cognitive and cardiac deficits in patients lacking this channel make it an attractive target for the treatment of neuropathic pain.
منابع مشابه
Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.
The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary er...
متن کاملCongenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations
SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To ...
متن کاملFamilial pain syndromes from mutations of the NaV1.7 sodium channel.
The literature currently suggests that voltage-gated sodium channels play a major role in the pathogenesis of neuropathic pain. Alterations in the expression and targeting of specific sodium channels within injured dorsal root ganglia neurons appear to predispose the neurons to abnormal firing properties, allowing for the development of neuropathic pain. Mutations of one particular sodium chann...
متن کاملAnalgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain
Loss-of-function mutations of Na(V)1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of Na(V)1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of Na(V)1.7-mediated pain based on intraplantar injection of the s...
متن کاملA sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.
Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming alpha-subunits Na(V)1.1, Na(V)1.2 and Na(V)1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes Na(V)1.3, is part of this cluster, but until r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in neurosciences
دوره 30 11 شماره
صفحات -
تاریخ انتشار 2007